Reasons and Options for Updating an Opponent Model in Persuasion Dialogues

Elizabeth Black\(^1\) and Anthony Hunter\(^2\)

\(^1\) Department of Informatics, King’s College London
elizabeth.black@kcl.ac.uk
\(^2\) Department of Computer Science, University College London
a.hunter@cs.ucl.ac.uk

Abstract. Dialogical argumentation allows agents to interact by constructing and evaluating arguments through a dialogue. Numerous proposals have been made for protocols for dialogical argumentation, and recently there is interest in developing better strategies for agents to improve their own outcomes from the interaction by using an opponent model to guide their strategic choices. However, there is a lack of clear formal reasons for why or how such a model might be useful, or how it can be maintained. In this paper, we consider a simple type of persuasion dialogue, investigate options for using and updating an opponent model, and identify conditions under which such use of a model is beneficial.

1 Introduction

Argument dialogues are an established agreement technology; they provide a principled way of structuring rational interactions between participants (machine or human) who argue about the validity of certain claims in order to resolve their conflicting information, competing goals, incompatible intentions or opposing views of the world [1]. Such dialogues are typically defined by the moves that can be made and rules to determine which moves are permissible at any point in the dialogue. Much existing work in the field focusses on defining argument dialogues that allow achievement of a particular goal; for example, to persuade the other participant to accept some belief [2] or to agree on some action to achieve a shared goal [3]. However, successful achievement of a participant’s dialogue goal normally depends on the strategy it employs to determine which of the permissible moves to make during the dialogue; the development of effective argument dialogue strategies is thus an important area of active research [4].

Recent work on argument dialogue strategy assumes the strategiser has some uncertain model of its interlocutor, derived somehow from the strategiser’s past interactions, which it uses to guide its choice of moves [5, 6]. However, there is a lack of formal investigation into how such a model can be maintained and under what circumstances it can be useful. Rienstra et al. propose a mechanism for updating an opponent model with the addition of arguments proposed or received by the opponent [6], Black et al.’s approach involves also removing from the opponent model anything that is inconsistent with the observed opponent
behaviour [5], while Hadjinikolis et al. consider how an agent can develop a model of the likelihood that an opponent will know a particular argument if it asserts some other argument [7]; however, none of these works formally investigate the impact of the model update mechanism on the dialogue outcome.

We are interested in understanding the different options for updating an opponent model and investigating the circumstances under which such a model can be useful. We consider a simple type of persuasion dialogue with two participants, the persuader and the responder. The persuader (who has an uncertain model of the responder) aims to convince the responder to accept the topic of the dialogue by asserting beliefs, while the responder replies honestly to indicate whether it is currently convinced of the acceptability of the topic.

We investigate the performance of two model update mechanisms, based on those used by Rienstra et al. [6] and Black et al. [5]. In the first (which we refer to as basic), beliefs asserted by the persuader are added to its model of the responder, while the second mechanism (which we refer to as smart) also removes from the persuader’s model of the responder anything that is inconsistent with the moves the responder makes (under the assumption that the responder is honest). We do not focus here on how the persuader determines which beliefs to assert and which order to assert them in; we assume the persuader has a mechanism for determining some total ordering over its beliefs (which we refer to as its strategy and corresponds to the order in which it will assert its beliefs) and instead focus on whether it uses its model of the responder to decide when to give up trying to persuade the responder. We consider the case where the persuader will not give up until it has exhausted all its beliefs (called an exhaustive persuader) and the case where the persuader will give up as soon as, given its model of the responder, it believes it is not possible to successfully persuade the responder no matter which beliefs it asserts (called an economical persuader).

We formally investigate the performance of our model update mechanisms by identifying the situations in which, when following the same strategy, a persuader of one type will successfully persuade the responder, while a persuader of another type will unsuccessfully terminate the dialogue before it has achieved its goal. This paper thus contributes to our understanding of the situations in which it is disadvantageous to use a particular model update mechanism.

2 Simple persuasion dialogues

In our simple persuasion dialogues (which are adapted from the simple persuasion dialogues of Black et al. [5]) the persuader aims to convince the responder to accept the topic of the dialogue by asserting beliefs. We make no prescription as to which semantics the participants use to reason about the acceptability of beliefs. We assume only a finite logical language L and some function for determining the set of acceptable claims given some knowledge base of L.

Definition 1. For a knowledge base $\Phi \subseteq L$, the function $\text{Acceptable} : \phi(L) \rightarrow \phi(L)$ returns the set of acceptable claims of Φ such that: $\text{Acceptable}(\Phi) = \{\alpha \in L \mid \alpha \text{ is acceptable given } \Phi \text{ under the chosen acceptability semantics}\}$.
Example 1. Let \(\text{denoted} \ S(\text{acc}) \) be a dialogue scenario. If \(\text{P}_0(\text{ag}_p) = \{a, b, c, d, e\} \), \(\text{P}_0(\text{ag}_R) = \{b\} \) and \(\text{T}_0 = \{\{a, b\}, \{a, c\}\} \), then \(\text{ds} \) is not accurate. If \(\text{P}_0(\text{ag}_p) = \{a, b, c, d, e\} \), \(\text{P}_0(\text{ag}_R) = \{b\} \) and \(\text{T}_0 = \{\{a, b\}, \{a, c\}, \{b\}\} \), then \(\text{ds} \) is accurate.

The set of moves used in simple persuasion dialogues is \(\mathcal{M} = \{(\text{open}, \tau), (\text{assert}, \phi), (\text{pass}), (\text{close})\} \) where \(\tau \in \mathcal{L} \) is the topic of the dialogue, \(\phi \in \mathcal{L} \), and the function \(\text{Sender} : \mathcal{M} \to \text{Ag} \) returns the sender of a move. A simple persuasion dialogue is a sequence of dialogue states, where each state consists of a move being made, a function that returns each participant’s position after that move has been made, and a set that represents the persuader’s model of the responder after that move has been made. The participants take it in turn to make moves. The persuader always starts by opening with the dialogue topic, following which it can assert a wff of \(\mathcal{L} \) or make a close move. The responder can make a close or a pass move. The persuader cannot repeat assertions. The last move of the dialogue, and only the last move, is always a close move (and so either participant can choose to terminate the dialogue by making a close move): if this move is made by the responder, the dialogue is successful, otherwise it is unsuccessful. The length of a dialogue is equal to the number of dialogue states.
Definition 3. A simple persuasion dialogue of dialogue scenario \((A_g, P_0, T_0, \tau)\) is a sequence of dialogue states \([(m_1, P_1, T_1), \ldots, (m_t, P_t, T_t)]\) where \(\forall s \text{ s.t. } 1 \leq s \leq t:\)

1. \(P_s : A_g \to \varphi(\mathcal{L})\);
2. \(T_s \subseteq \varphi(\mathcal{L})\);
3. \(m_s \in \{\text{open}, \tau, \text{assert}, \phi, \text{pass}, \text{close}\}\) where \(\phi \in \mathcal{L}\);
4. \(m_s = \text{(open, } \tau)\) iff \(s = 1\);
5. if \(s\) is odd, then \(\text{Sender}(m_s) = ag_p\) and \(m_s \in \{\text{open}, \tau, \text{assert}, \phi, \text{close}\}\);
6. if \(s\) is even, then \(\text{Sender}(m_s) = ag_r\) and \(m_s \in \{\text{pass}, \text{close}\}\);
7. \(m_s = \text{(close)}\) iff \(s = t\);
8. if \(m_s = \text{(assert, } \phi)\), then \(\forall i \text{ s.t. } 1 \leq i < s, m_i \neq \text{(assert, } \phi)\).

Let \(d = [(m_1, P_1, T_1), \ldots, (m_t, P_t, T_t)]\) be a simple persuasion dialogue: the length of \(d\), denoted \(\text{Length}(d)\), is \(t\); \(d\) is successful iff \(\text{Sender}(m_t) = ag_r\).

The previous definition defines the protocol that participants of a simple persuasion dialogue must abide by. We also make some assumptions about the behaviour of the dialogue participants, namely: the persuader’s position does not change during the dialogue (so it is not engaged with any processes external to the dialogue); the persuader only asserts things that are part of its own position (so it is honest); the responder’s position is updated only to include things asserted by the persuader (so the responder trusts the persuader and is not engaged with any processes external to the dialogue); and the responder’s moves accurately reflect whether it has been successfully convinced of the topic (so it is honest). If these assumptions hold we say the dialogue is regular.

Definition 4. A simple persuasion dialogue \([(m_1, P_1, T_1), \ldots, (m_t, P_t, T_t)]\) of dialogue scenario \((A_g, P_0, T_0, \tau)\) is a regular simple persuasion dialogue iff \(\forall s \text{ s.t. } 1 \leq s \leq t:\)

1. \(P_s(\text{ag}_p) = P_0(\text{ag}_p)\);
2. if \(m_s = \text{(assert, } \phi)\), then \(\phi \in P_{s-1}(\text{ag}_p)\), and \(P_s(\text{ag}_r) = P_{s-1}(\text{ag}_r) \cup \{\phi\}\);
3. \(\tau \in \text{Acceptable}(P_{s-1}(\text{ag}_r))\) iff \(s = t\) and \(\text{Sender}(m_s) = ag_r\).

The set of all regular simple persuasion dialogues of a dialogue scenario \(ds\) is denoted \(\text{Dialogues}_{\text{reg}}(ds)\).

The responder of a regular simple persuasion dialogue has no choice over the moves it can make; since we assume it to be honest, it terminates the dialogue with a close move if and only if it finds the topic to be acceptable, otherwise it makes a pass move. The persuader, however, can chose which beliefs to assert and whether to (unsuccessfully) terminate the dialogue; we consider conditions under which different types of persuader will terminate the dialogue in Section 3.

Example 2. Let \(ds = (A_g, P_0, T_0, f)\) be a dialogue scenario with topic \(f\) s.t. \(P_0(\text{ag}_p) = \{a, b, c, d, e\}\), \(P_0(\text{ag}_r) = \{b\}\), \(T_0 = \{\{a, b\}, \{a, c\}\}\). The only sets of beliefs that determine the topic \(f\) to be acceptable (i.e., the only sets \(\Phi\) s.t. \(f \in \text{Acceptable}(\Phi)\)) are \(\{b, c, d\}\) and \(\{a, b, c\}\).

The following are each simple persuasion dialogues of \(ds\). (In dialogues \(d1\) and \(d3\) the persuader’s model of the responder is not updated, while in dialogues \(d2\) and \(d4\) the persuader’s model is updated to include beliefs asserted by the persuader. We formally define model update methods in Section 3.)
d1 = [(open, f), P1, Y1], (pass, P2, Y2), (close, P3, Y3)] where
- ∀ i s.t. 1 ≤ i ≤ 3, P_i(agP) = {a, b, c, d, e},
- ∀ i s.t. 1 ≤ i ≤ 3, P_i(agR) = {b},
- ∀ i s.t. 1 ≤ i ≤ 3, Y_i = \{a, b\}, \{a, c\}.

d1 is a regular unsuccessful dialogue.

d2 = [(open, f), P1, Y1], (pass, P2, Y2), ((assert, b), P3, Y3), (pass, P4, Y4),
((assert, c), P5, Y5), (pass, P6, Y6), (close, P7, Y7)] where
- ∀ i s.t. 1 ≤ i ≤ 4, P_i(agP) = {a, b, c, d, e},
- ∀ i s.t. 1 ≤ i ≤ 4, P_i(agR) = {b},
- ∀ i s.t. 5 ≤ i ≤ 7, P_i(agR) = \{b, c\},
- Y_1 = Y_2 = \{a, b\}, \{a, c\},
- Y_3 = Y_4 = \{a, b, c\}, and
- ∀ i s.t. 5 ≤ i ≤ 7, Y_i = \{a, b, c\}.

d2 is a regular unsuccessful dialogue.

d3 = [(open, f), P1, Y1], (pass, P2, Y2), ((assert, b), P3, Y3), (pass, P4, Y4),
((assert, c), P5, Y5), (pass, P6, Y6), (assert, a), P7, Y7), (close, P8, Y8)] where
- ∀ i s.t. 1 ≤ i ≤ 7, P_i(agP) = \{a, b, c, d, e\},
- ∀ i s.t. 1 ≤ i ≤ 4, P_i(agR) = \{b\},
- P_5(agR) = P_6(agR) = \{b, c\},
- P_7(agR) = P_8(agR) = \{a, b, c\}, and
- ∀ i s.t. 1 ≤ i ≤ 8, Y_i = Y_{i-1}.

d3 is a regular successful dialogue.

d4 = [(open, f), P1, Y1], (pass, P2, Y2), ((assert, b), P3, Y3), (close, P4, Y4)] where
- ∀ i s.t. 1 ≤ i ≤ 4, P_i(agP) = \{a, b, c, d, e\},
- ∀ i s.t. 1 ≤ i ≤ 4, P_i(agR) = \{b\},
- Y_1 = Y_2 = \{a, b\}, \{a, c\}, and
- Y_3 = Y_4 = \{a, b, c\}.

d4 is not a regular dialogue, since at the point the responder successfully terminates the dialogue it does not find the topic to be acceptable.

We have now defined some assumptions about the behaviour of participants in a regular simple persuasion dialogue, however, we are yet to consider how the persuader updates or uses its model of the responder. In the following section we define different types of persuader according to the mechanism it uses to update its model of the responder and according to whether it will choose to unsuccessfully terminate the dialogue once, according to its (possibly incorrect) model, it believes it is impossible to convince the responder.

3 Updating and using an opponent model

We first consider how a persuader may use its model of the responder to determine when to give up trying to persuade the responder. An economical persuader only makes a close move (and will always make a close move) when, according to its model of the responder, it believes there is no sequence of assertions it
can make that will lead to a successful dialogue; that is, for every set \(\Psi \) that it believes could possibly be the responder’s position, there is no subset of its own position that it can assert (i.e., contains no beliefs already asserted) and that, when combined with \(\Psi \), would determine the topic to be acceptable.

Definition 5. Let \(d = [(m_1, P_1, Y_1), \ldots, (m_t, P_t, Y_t)] \in \text{Dialogues}_{\text{reg}}((Ag, P_0, Y_0, \tau)) \). We say \(d \) has an economical persuader iff:

1. if Sender\((m_i) = ag_P\), then \(\forall \Psi \in Y_{t-1}, \exists \Phi \subseteq P_{t-1}(ag_P) \) s.t.:
 - (a) \(\Phi \neq \emptyset \),
 - (b) \(\Phi \cap \{ \phi \mid \exists s \text{ s.t. } 1 \leq s < t \text{ and } m_s = (\text{assert}, \phi) \} = \emptyset \), and
 - (c) \(\tau \in \text{Acceptable}(\Psi \cup \Phi) \); and
2. \(\forall s \text{ s.t. } 1 \leq s < t \text{ and } s \text{ is odd}, \exists \Psi \in Y_{s-1} \text{ s.t. } \exists \Phi \subseteq P_{s-1}(ag_P) \) s.t.:
 - (a) \(\Phi \neq \emptyset \),
 - (b) \(\Phi \cap \{ \phi \mid \exists i \text{ s.t. } 1 \leq i < s \text{ and } m_i = (\text{assert}, \phi) \} = \emptyset \), and
 - (c) \(\tau \in \text{Acceptable}(\Psi \cup \Phi) \);

Example 3. Of the three regular dialogues given in Example 2 (\(d_1, d_2 \) and \(d_3 \)) only \(d_2 \) and \(d_3 \) have an economical persuader.

We now define three types of persuader whose performance we will later explore. An exhaustive persuader does not maintain its model of the responder and will only terminate the dialogue once it has exhausted all beliefs it can assert (i.e., does not consider its model when deciding whether to terminate the dialogue). A basic persuader is an economical persuader that only updates its opponent model to reflect that the responder is aware of things the persuader has asserted. A persuader is smart if it is an economical persuader that updates its opponent model to reflect that the responder is aware of things the persuader has asserted and also removes from its model sets that are inconsistent with the responder’s behaviour (assuming a regular dialogue). Thus, if the responder makes a pass move, a smart persuader removes from its model any sets that determine the topic to be acceptable (since it assumes the responder is honest).

Definition 6. Let \(d = [(m_1, P_1, Y_1), \ldots, (m_t, P_t, Y_t)] \in \text{Dialogues}_{\text{reg}}((Ag, P_0, Y_0, \tau)) \). \(d \) has an exhaustive persuader iff: if Sender\((m_i) = ag_P\), then \(\forall \phi \in P_{t-1}(ag_P), \exists s \text{ s.t. } 1 \leq s < t \text{ and } m_s = (\text{assert}, \phi) \) and \(\forall s \text{ s.t. } 1 \leq s < t: Y_s = Y_{s-1} \).

\(d \) has a basic persuader iff \(d \) has an economical persuader and \(\forall s \text{ s.t. } 1 \leq s < t : \text{ if } m_s = (\text{assert}, \phi), \text{ then } Y_s = \{ \Psi \cup \{ \phi \} \mid \Psi \in Y_{s-1} \} \}; \text{ otherwise } Y_s = Y_{s-1} \).

\(d \) has a smart persuader iff \(d \) has an economical persuader and \(\forall s \text{ s.t. } 1 \leq s < t : \text{ if } m_s = (\text{assert}, \phi), \text{ then } Y_s = \{ \Psi \cup \{ \phi \} \mid \Psi \in Y_{s-1} \} \}; \text{ if } m_s = (\text{pass}), \text{ then } Y_s = \{ \Psi \in Y_{s-1} \mid \tau \notin \text{Acceptable}(\Psi) \} \}; \text{ otherwise } Y_s = Y_{s-1} \).

Example 4. Let \(ds = (Ag, P_0, Y_0, f) \) be the dialogue scenario given in Example 2 where \(P_0(ag_P) = \{a, b, c, d, e\}, P_0(ag_R) = \{b\}, Y_0 = \{\{a, b\}, \{a, c\}\} \) and the only sets of beliefs that determine the topic of the dialogue to be acceptable (i.e., the only sets \(\Phi \) s.t. \(f \in \text{Acceptable}(\Phi) \)) are \(\{b, c, d\} \) and \(\{a, b, c\} \). The persuader of the dialogue \(d_1 \) given in Example 2 is neither exhaustive, basic
nor smart. The persuader of the dialogue d_2 given in Example 2 is basic. The persuader of the dialogue d_3 given in Example 2 is exhaustive.

$d_5 = \langle (\text{open}, f), P_1, \mathcal{Y}_1, (\langle \text{pass} \rangle, P_2, \mathcal{Y}_2), (\langle \text{assert}, b \rangle, P_3, \mathcal{Y}_3), (\langle \text{pass} \rangle, P_4, \mathcal{Y}_4), (\langle \text{assert}, c \rangle, P_5, \mathcal{Y}_5), (\langle \text{pass} \rangle, P_6, \mathcal{Y}_6), (\langle \text{close} \rangle, P_7, \mathcal{Y}_7) \rangle$

- $\forall i \text{ s.t. } 1 \leq i \leq 7, P_i(\text{ag}_P) = \{a, b, c, d, e\}$,
- $\forall i \text{ s.t. } 1 \leq i \leq 4, P_i(\text{ag}_R) = \{b\}$,
- $\forall i \text{ s.t. } 5 \leq i \leq 7, P_i(\text{ag}_R) = \{b, c\}$,
- $\mathcal{Y}_1 = \mathcal{Y}_2 = \{\{a, b\}, \{a, c\}\}$,
- $\mathcal{Y}_3 = \{\{a, b\}\}$,
- $\mathcal{Y}_4 = \{\{a, b\}\}$,
- $\mathcal{Y}_5 = \{\{a, b, c\}\}$, and
- $\mathcal{Y}_6 = \mathcal{Y}_7 = \emptyset$.

d_5 is a regular unsuccessful dialogue with a smart persuader.

$d_6 = \langle (\text{open}, f), P_1, \mathcal{Y}_1, (\langle \text{pass} \rangle, P_2, \mathcal{Y}_2), (\langle \text{assert}, a \rangle, P_3, \mathcal{Y}_3), (\langle \text{pass} \rangle, P_4, \mathcal{Y}_4), (\langle \text{assert}, d \rangle, P_5, \mathcal{Y}_5), (\langle \text{pass} \rangle, P_6, \mathcal{Y}_6), (\langle \text{assert}, c \rangle, P_7, \mathcal{Y}_7), (\langle \text{pass} \rangle, P_8, \mathcal{Y}_8), (\langle \text{assert}, e \rangle, P_9, \mathcal{Y}_9), (\langle \text{pass} \rangle, P_{10}, \mathcal{Y}_{10}), (\langle \text{assert}, b \rangle, P_{11}, \mathcal{Y}_{11}), (\langle \text{pass} \rangle, P_{12}, \mathcal{Y}_{12}), (\langle \text{close} \rangle, P_{13}, \mathcal{Y}_{13}) \rangle$

- $\forall i \text{ s.t. } 1 \leq i \leq 7, P_i(\text{ag}_P) = \{a, b, c, d, e\}$,
- $\forall i \text{ s.t. } 1 \leq i \leq 4, P_i(\text{ag}_R) = \{b\}$,
- $P_1(\text{ag}_R) = P_2(\text{ag}_R) = \{b\}$,
- $P_3(\text{ag}_R) = P_4(\text{ag}_R) = \{a, b\}$,
- $P_5(\text{ag}_R) = P_6(\text{ag}_R) = \{a, b, d\}$,
- $P_7(\text{ag}_R) = P_8(\text{ag}_R) = \{a, b, c, d\}$,
- $\forall i \text{ s.t. } 9 \leq i \leq 13, P_i(\text{ag}_R) = \{a, b, c, d, e\}$,
- $\forall i \text{ s.t. } 1 \leq i \leq 13, \mathcal{Y}_i = \mathcal{Y}_{i-1}$.

d_5 is a regular unsuccessful dialogue with an exhaustive persuader.

It follows from our definitions that if a regular dialogue of an \emph{accurate} scenario has a basic or smart persuader, the persuader’s model will remain accurate throughout the dialogue (i.e., the responder’s actual beliefs will always be a member of the persuader’s model).

\textbf{Lemma 1.} If $ds \in \mathcal{S}_{\text{acc}}$ and $[\langle m_1, P_1, \mathcal{Y}_1 \rangle, \ldots, \langle m_t, P_t, \mathcal{Y}_t \rangle] \in \mathcal{D}_{\text{reg}}(ds)$ has a basic or smart persuader, then for all i such that $1 \leq i \leq t$, $P_i(\text{ag}_R) \in \mathcal{Y}_i$.

In the following section, we define how a dialogue is generated from a particular dialogue scenario by a particular type of persuader.

\section{Generating dialogues}

We are interested in exploring the usefulness of our model update mechanisms when the persuader uses its model of the responder to decide when to unsuccessfully terminate the dialogue. We are not concerned here with the strategical choices the persuader makes to determine which beliefs to assert and which order to assert them in, but rather assume that the persuader has some mechanism
for determining this. We define a strategy for a dialogue scenario as a sequence of beliefs that is some permutation of the persuader’s position, corresponding to the order in which it will assert beliefs. Different dialogues may be generated from the same dialogue scenario by persuaders of different types following the same strategy, since an economical persuader will choose to terminate the dialogue once it thinks it is in a hopeless position according to its model of the responder, and a basic and a smart persuader’s models may diverge.

Definition 7. A strategy of a dialogue scenario \((Ag, P_0, Y_0, \tau) \in S\) is a sequence \([\alpha_1, \ldots, \alpha_n]\) s.t. \(\{\alpha_1, \ldots, \alpha_n\} = P_0(\text{ag}_p)\) and \(\forall i, i' \text{ s.t. } 1 \leq i, i' \leq n, \alpha_i = \alpha_{i'}\) iff \(i = i'\).

Example 5. Let \(ds = (Ag, P_0, Y_0, f)\) be the dialogue scenario given in Example 2 where \(P_0(\text{ag}_p) = \{a, b, c, d, e\}\), \(P_0(\text{ag}_R) = \{b\}\) and \(Y_0 = \{\{a, b\}, \{a, c\}\}\). Examples of strategies of \(ds\) are \([b, c, a, d, e]\) and \([b, c, a, e, d]\). However, \([b, c, e]\) is not a strategy of \(ds\) (as not every element of the persuader’s position is represented in the sequence) and \([b, c, a, c, d, e]\) is not a strategy of \(ds\) (as \(c\) appears twice in the sequence).

Whether the persuader makes a close move is determined by its initial position, the assertions it has already made and (in the case of an economical persuader) its model of the responder; whether the responder makes a close move is determined by its initial position and the assertions made by the persuader. Thus each possible strategy maps to exactly one dialogue for each type of persuader and a given dialogue scenario, where the assertions made during the dialogue correspond to a prefix of the strategy; we say this is the dialogue of the persuader type generated by the strategy from the dialogue scenario.

Definition 8. Let \(ds \in S, \tau \in \{\text{exh, bas, sm}\}\) and \(st = [\alpha_1, \ldots, \alpha_n]\) be a strategy of \(ds\). The dialogue of type \(\tau\) generated by \(st\) from \(ds\), denoted \(\text{Dialogue}(ds, \tau, st)\), is \(d = [(m_1, P_1, Y_1), \ldots, (m_t, P_t, Y_t)]\) \((t \leq 2n + 2)\) s.t.

1. \(d \in \text{Dialogues}_{\tau}(ds)\),
2. \(\forall i \text{ s.t. } 1 < i < t\) and \(i\) is odd, \(m_i = (\text{assert}, \alpha_x)\) where \(x = \frac{i-1}{2}\),
3. if \(\tau = \text{exh}\), then \(d\) has an exhaustive persuader,
4. if \(\tau = \text{bas}\), then \(d\) has a basic persuader, and
5. if \(\tau = \text{sm}\), then \(d\) has a smart persuader.

Example 6. Let \(ds = (Ag, P_0, Y_0, f)\) be the dialogue scenario given in Example 2 where \(P_0(\text{ag}_p) = \{a, b, c, d, e\}\), \(P_0(\text{ag}_R) = \{b\}\), \(Y_0 = \{\{a, b\}, \{a, c\}\}\) and the only sets of beliefs that determine the topic \(f\) to be acceptable (i.e., the only sets \(\Phi\) s.t. \(f \in \text{Acceptable}(\Phi)\)) are \(\{b, c, d\}\) and \(\{a, b, c\}\).

Let \(st_1 = [b, c, a, d, e], st_2 = [b, c, a, e, d], st_3 = [a, d, c, e, b]\) be strategies of \(ds\).

Dialogue \((ds, \text{bas, } st_1) = \text{Dialogue}(ds, \text{bas, } st_2) = d_2\) (as given in Example 2).

Dialogue \((ds, \text{sm, } st_1) = \text{Dialogue}(ds, \text{sm, } st_2) = d_5\) (as given in Example 4).

Dialogue \((ds, \text{exh, } st_3) = d_6\) (as given in Example 4).

It follows from Definition 6 that if a basic and a smart persuader each follow the same strategy, the smart persuader’s model will be a subset of the basic persuader’s model at corresponding points in the two dialogues produced.
Lemma 2. If $ds \in \mathcal{S}$ and st is a strategy of ds s.t. $\text{Dialogue}(ds, \text{bas}, st) = [(m_{b_1}, P_{b_1}, \Upsilon_{b_1}), \ldots, (m_{b_n}, P_{b_n}, \Upsilon_{b_n})]$ and $\text{Dialogue}(ds, \text{sm}, st) = [(m_{s_1}, P_{s_1}, \Upsilon_{s_1}), \ldots, (m_{s_m}, P_{s_m}, \Upsilon_{s_m})]$, then $\forall i \text{ s.t. } 1 \leq i \leq m$, if $i \leq n$, then $\Upsilon_{s_i} \subseteq \Upsilon_{b_i}$.

It follows from our definitions and the previous lemma, that the smart dialogue generated by a particular strategy from a dialogue scenario is never longer than the basic dialogue generated with the same strategy, which is never longer than the exhaustive dialogue generated.

Proposition 1. If $ds \in \mathcal{S}$ and st is a strategy of ds, then
\[
\text{Length}(\text{Dialogue}(ds, \text{exh}, st)) \geq \text{Length}(\text{Dialogue}(ds, \text{bas}, st)) \geq \text{Length}(\text{Dialogue}(ds, \text{sm}, st)).
\]

In the following section, we compare the performance of the different types of persuader we have defined (exhaustive, basic, smart). In particular, we identify the situations in which a persuader of one type can be successful while a persuader of another type may be unsuccessful.

5 Performance of model update mechanisms

We are interested in identifying the situations when a persuader of one type has an advantage over a persuader of another type; i.e., when, following a particular strategy, a persuader of one type will successfully convince the responder, while a persuader of another type will not. We later give the necessary and sufficient conditions under which such a difference in persuader performance can occur, looking separately at accurate and non-accurate scenarios (Tables 1 and 2).

In particular, we show that, for accurate scenarios, there is no difference in success of the different persuader types (Table 1). For accurate scenarios, the only difference in the dialogues produced by the different types of persuader with a particular strategy is that, if the dialogues produced are unsuccessful, a smart persuader may terminate the dialogue before a basic persuader, who may terminate before an exhaustive persuader (Table 1 and Prop. 1).

We show that, for scenarios that are not accurate, it is possible for an exhaustive persuader to generate a successful dialogue, while a basic and a smart persuader each generate an unsuccessful dialogue with the same strategy, and we give the conditions under which this occurs. We also show that it is possible for an exhaustive and a basic persuader to each generate a successful dialogue, while a smart persuader generates an unsuccessful dialogue with the same strategy, and give the conditions under which this occurs. In order to show these results, we rely on the following propositions.

If we consider only accurate scenarios, if a persuader of a particular type generates a successful dialogue with a given strategy, then a persuader of either of the other types will generate the same dialogue with the same strategy. This follows from Lemma 1, the definitions of basic, smart and exhaustive persuaders (Def. 6) and the assumptions we have made about regular dialogues (Def. 4).
Proposition 2. If $ds \in S_{\text{acc}}$ and st is a strategy of ds s.t. $\text{Dialogue}(ds, \tau, st)$ is successful (where $\tau \in \{\text{exh}, \text{bas}, \text{sm}\}$) then $\forall \tau' \in \{\text{exh}, \text{bas}, \text{sm}\}$, $\text{Dialogue}(ds, \tau, st) = \text{Dialogue}(ds, \tau', st)$.

If we again consider only accurate scenarios, but with a strategy that generates an unsuccessful dialogue for one persuader type, then the same strategy will also generate an unsuccessful dialogue for each of the other persuader types (in this case the dialogue generated by a smart persuader may be shorter than the dialogue generated by a basic persuader, which may be shorter than the dialogue generated by an exhaustive persuader, which must be of length $2n + 3$ where n is the size of the persuader’s position). Again, this follows from Lemma 1, the definitions of basic, smart and exhaustive persuaders (Def. 6) and the assumptions we have made about regular dialogues (Def. 4).

Proposition 3. If $ds \in S_{\text{acc}}$ and st is a strategy of ds s.t. $\text{Dialogue}(ds, \tau, st)$ is unsuccessful (where $\tau \in \{\text{exh}, \text{bas}, \text{sm}\}$) then $\forall \tau' \in \{\text{exh}, \text{bas}, \text{sm}\}$, $\text{Dialogue}(ds, \tau', st)$ is also unsuccessful.

For any dialogue scenario (accurate or not), if the dialogue generated by an exhaustive persuader with a particular strategy is unsuccessful, then the dialogue generated by a basic persuader with the same strategy is unsuccessful; similarly, if the dialogue generated by a basic persuader with a particular strategy is unsuccessful, then the dialogue generated by a smart persuader with the same strategy is unsuccessful. This follows from Lemma 2, the definition of an exhaustive persuader (Def. 6) and the assumptions we have made about regular dialogues (Def. 4).

Proposition 4. Let $ds \in S$ and st be a strategy of ds. If $\text{Dialogue}(ds, \text{exh}, st)$ is unsuccessful, then $\text{Dialogue}(ds, \text{bas}, st)$ is unsuccessful. If $\text{Dialogue}(ds, \text{bas}, st)$ is unsuccessful, then $\text{Dialogue}(ds, \text{sm}, st)$ is unsuccessful.

For a dialogue scenario that is not accurate, it follows from our definitions that the dialogue produced by an exhaustive persuader with a particular strategy is successful but the dialogue produced by a basic persuader with the same strategy is unsuccessful if and only if: the arguments asserted by the basic persuader are a strict prefix of those asserted by the exhaustive persuader (condition 1 in Prop. 5); the topic of the dialogue is determined to be acceptable by the union of the responder’s initial position with the arguments asserted by the exhaustive persuader (condition 2); there is no strict prefix of the arguments asserted by the exhaustive persuader that, when combined with the responder’s initial position, determines the topic to be acceptable (condition 3); for every element of the persuader’s initial model of the responder, there is no subset of the persuader’s initial position that contains the arguments asserted by the basic persuader and that, when combined with the responder’s initial position, determines the topic to be acceptable (condition 4); for every strict prefix of the arguments asserted by the basic persuader, there is some subset of the persuader’s initial position that contains that prefix and some element of the persuader’s initial model such
that the union of the two determines the topic to be acceptable (condition 5). Furthermore, it follows from these results that for every element Ψ of the persuader’s initial model of the responder: if Ψ is a proper subset of the responder’s initial position, then there is a belief that the responder is aware of and of which the persuader has no knowledge; if the responder’s initial position is a proper subset of Ψ, then there is some belief in Ψ that is not in the responder’s initial position and is not asserted by the exhaustive persuader; otherwise there is something in the responder’s initial position that is not in Ψ and there is something in Ψ that is not in the responder’s initial position, and either there is a belief in the responder’s initial position that is not present in the persuader’s initial position, or there is a belief in Ψ that is not in the responder’s initial position and is not asserted by the exhaustive persuader (condition 6).

Proposition 5. Let $ds = (Ag, P_0, \tau_0, \tau) \in S \setminus S_{acc}$ and $st = [\alpha_1, \ldots, \alpha_n]$ be a strategy of ds.

Dialogue(ds, bas, st) is unsuccessful and Dialogue(ds, exh, st) is successful where Dialogue$(ds, bas, st) = [(open, \tau), (pass), (assert, \alpha_1), (pass), \ldots, (assert, \alpha_j), (pass), (close)]$ and Dialogue$(ds, exh, st) = [(open, \tau), (pass), (assert, \alpha_1), (pass), \ldots, (assert, \alpha_k), (close)]$

iff

1. $j < k$,
2. $\exists i \text{ s.t. } 1 \leq i < k$ and $\tau \in \text{Acceptable}(\{\alpha_1, \ldots, \alpha_k\} \cup \partial_0(ag_R))$,
3. $\exists i \text{ s.t. } 1 \leq i < k$ and $\tau \in \text{Acceptable}(\{\alpha_1, \ldots, \alpha_k\} \cup \partial_0(ag_R))$,
4. $\forall \Psi \in \mathcal{T}_0, \exists \Phi \subseteq \partial_0(ag_P) \text{ s.t. } \{\alpha_1, \ldots, \alpha_j\} \subseteq \Phi$ and $\tau \in \text{Acceptable}(\Psi \cup \Phi)$,
5. $\forall i \text{ s.t. } 1 \leq i < j, \exists \Psi \in \mathcal{T}_0 \text{ s.t. } \exists \Phi \subseteq \partial_0(ag_P) \text{ s.t. } \{\alpha_1, \ldots, \alpha_j\} \subseteq \Phi$ and $\tau \in \text{Acceptable}(\Psi \cup \Phi)$, and
6. $\forall \Psi \in \mathcal{T}_0$, either
 - $\Psi \subseteq \partial_0(ag_R)$ and $\exists \phi \in \partial_0(ag_R) \setminus \Psi \text{ s.t. } \phi \notin \partial_0(ag_P)$,
 - $\partial_0(ag_R) \subseteq \Psi$ and $\exists \phi \text{ s.t. } \phi \in \Psi \setminus \partial_0(ag_R)$ and $\phi \notin \{\alpha_1, \ldots, \alpha_k\}$, otherwise
 - $\exists \phi \in \partial_0(ag_R) \setminus \Psi$, $\exists \psi \in \Psi \setminus \partial_0(ag_R)$, and either
 - $\partial_0(ag_R) \setminus \partial_0(ag_P) \neq \emptyset$, or
 - $\exists \phi \text{ s.t. } \phi \in \Psi \setminus \partial_0(ag_R) \text{ and } \phi \notin \{\alpha_1, \ldots, \alpha_k\}$.

Proof.

Left to right. Condition 1 follows directly from the definition of successful dialogues (Def. 3) and Prop. 1. Conditions 2-5 follow directly from the definitions of a basic persuader, an exhaustive persuader, an economical persuader and a regular dialogue (Defs. 4, 5 and 6.)

Since $ds \notin S_{acc}$, it cannot be the case that $\partial_0(ag_R) \in \mathcal{T}_0$ (Def. 2), thus $\forall \Psi \in \mathcal{T}_0$, either $\Psi \subseteq \partial_0(ag_R), \partial_0(ag_R) \subseteq \Psi$, or $\exists \phi \in \partial_0(ag_R) \setminus \Psi$ and $\exists \psi \in \Psi \setminus \partial_0(ag_R)$.

We now consider these three cases in turn.

Let $\Psi \in \mathcal{T}_0 \text{ s.t. } \Psi \subseteq \partial_0(ag_R)$. Since $\tau \in \text{Acceptable}(\{\alpha_1, \ldots, \alpha_k\} \cup \partial_0(ag_R))$ and $\Psi \subseteq \partial_0(ag_R)$, $\tau \in \text{Acceptable}(\Lambda \cup \Psi \cup \{\alpha_1, \ldots, \alpha_k\})$ where $\Lambda = \partial_0(ag_R) \setminus \Psi$. From 4, $\exists \phi \subseteq \partial_0(ag_P) \text{ s.t. } \{\alpha_1, \ldots, \alpha_j\} \subseteq \Phi$ and $\tau \in \text{Acceptable}(\Psi \cup \Phi)$. Therefore, $\exists \phi \in \Lambda \text{ s.t. } \phi \notin \partial_0(ag_P)$ and thus $\exists \phi \in \partial_0(ag_R) \setminus \Psi \text{ s.t. } \phi \notin \partial_0(ag_P)$.

Let $\Psi \in \mathcal{T}_0 \text{ s.t. } \partial_0(ag_R) \subseteq \Psi$. It follows from 4 that $\tau \notin \text{Acceptable}(\Psi \cup \Phi)$. Therefore, $\exists \phi \in \Lambda \text{ s.t. } \phi \notin \partial_0(ag_R)$, and thus $\exists \phi \in \partial_0(ag_R) \setminus \Psi \text{ s.t. } \phi \notin \partial_0(ag_R)$.

Let $\Psi \in \mathcal{T}_0 \text{ s.t. } \partial_0(ag_R) \subseteq \Psi$. Since $\tau \in \text{Acceptable}(\{\alpha_1, \ldots, \alpha_k\} \cup \partial_0(ag_R))$ and $\Psi \subseteq \partial_0(ag_R)$, $\tau \in \text{Acceptable}(\Lambda \cup \Psi \cup \{\alpha_1, \ldots, \alpha_k\})$ where $\Lambda = \partial_0(ag_R) \setminus \Psi$. From 4, $\exists \phi \subseteq \partial_0(ag_P) \text{ s.t. } \{\alpha_1, \ldots, \alpha_j\} \subseteq \Phi$ and $\tau \in \text{Acceptable}(\Psi \cup \Phi)$. Therefore, $\exists \phi \in \Lambda \text{ s.t. } \phi \notin \partial_0(ag_P)$ and thus $\exists \phi \in \partial_0(ag_R) \setminus \Psi \text{ s.t. } \phi \notin \partial_0(ag_R)$.
\{\alpha_1, \ldots, \alpha_k\}\). Since \(\tau \in \text{Acceptable}(\{\alpha_1, \ldots, \alpha_k\} \cup P_0(agr))\) and \(P_0(agr) \subset \Psi\), it must be the case that \(\exists \phi\ s.t. \phi \in \Psi \setminus P_0(agr)\) and \(\phi \notin \{\alpha_1, \ldots, \alpha_k\}\).

Let \(\Psi \in \mathcal{T}_0\) s.t. \(\exists \psi \in \Psi \setminus P_0(agr)\) and \(\exists \psi \notin P_0(agr)\). Assume \(P_0(agr) \setminus P_0(agr) = \emptyset\) (i.e., \(P_0(agr) \subseteq P_0(agr)\)). Since \(P_0(agr) \subseteq P_0(agr)\), it follows from 4 that \(\tau \notin \text{Acceptable}(\Psi \cup \{\alpha_1, \ldots, \alpha_k\} \cup P_0(agr))\). Since \(\tau \in \text{Acceptable}(\{\alpha_1, \ldots, \alpha_k\} \cup P_0(agr))\), it follows that \(\exists \phi \in \Psi\) s.t. \(\phi \notin \{\alpha_1, \ldots, \alpha_k\} \cup P_0(agr))\). Therefore either \(P_0(agr) \setminus P_0(agr) \neq \emptyset\), or \(\exists \phi \in \Psi\) s.t. \(\phi \notin \{\alpha_1, \ldots, \alpha_k\} \cup P_0(agr))\). Right to left. Follows from conditions 2-5 and from the definitions of a basic persuader, an exhaustive persuader, an economical persuader and a regular dialogue (Defs. 4, 5 and 6.).

Also considering only non-accurate dialogue scenarios, it similarly follows from our definitions that the dialogue produced by a basic persuader with a particular strategy is successful but the dialogue produced by a smart persuader with the same strategy is unsuccessful if and only if: the arguments asserted by the smart persuader are a strict prefix of those asserted by the basic persuader (condition 1, Prop. 6); the topic of the dialogue is determined to be acceptable by the union of responder’s initial position with the arguments asserted by the basic persuader (condition 2); there is no strict prefix of the arguments asserted by the basic persuader that, when combined with the responder’s initial position, determines the topic to be acceptable (condition 3); for every element \(\Psi\) of the persuader’s initial model of the responder, either \(\Psi\) determines the topic to be acceptable, or there is some strict prefix of the arguments asserted by the smart persuader that, when combined with \(\Psi\) determines the topic to be acceptable, or there is no subset of the persuader’s initial position that contains the arguments asserted by the smart persuader and when combined with \(\Psi\) determines the topic to be acceptable (condition 4); for every strict prefix \(p1\) of the arguments asserted by the smart persuader, there is some element \(\Psi\) of the persuader’s initial model such that there is no strict prefix \(p2\) of \(p1\) (including the empty prefix) that when combined with \(\Psi\) determines the topic to be acceptable and such that there exists some subset of the persuader’s initial position that contains \(p1\) and when combined with \(\Psi\) determines the topic to be acceptable.

Proposition 6. Let \(ds = (Ag, P_0, \mathcal{T}_0, \tau) \in S \setminus S_{acc}\) and \(st = [\alpha_1, \ldots, \alpha_n]\) be a strategy of \(ds\).

Dialogue\((ds, sm, st)\) is unsuccessful and Dialogue\((ds, bas, st)\) is successful where Dialogue\((ds, sm, st) = [(open, \tau), (pass), (assert, \alpha_1), (pass), \ldots, (assert, \alpha_j), (pass), (close)]\) and Dialogue\((ds, bas, st) = [(open, \tau), (pass), (assert, \alpha_1), (pass), \ldots, (assert, \alpha_k), (close)]\).

iff

1. \(j < k\),
2. \(\tau \in \text{Acceptable}(\{\alpha_1, \ldots, \alpha_k\} \cup P_0(agr))\),
3. \(\forall i \ s.t. \ 1 \leq i < k, \exists \Psi \in \mathcal{T}_0 \ s.t. \exists \phi \in P_0(agr) \ s.t. \ \{\alpha_1, \ldots, \alpha_i\} \subset \phi\) and \(\tau \in \text{Acceptable}(\Psi \cup \phi)\).
4. ∀Ψ ∈ Υ₀ s.t. τ ∉ Acceptable(Ψ) and ∃i s.t. 1 ≤ i < j and τ ∈ Acceptable((Ψ ∪ {α₁, ..., αᵢ}), ∃Φ ⊆ P₀(agP) s.t. {α₁, ..., αᵢ} ⊂ Φ and τ ∈ Acceptable((Ψ ∪ Φ)).
5. ∀i s.t. 1 ≤ i < j, ∃Ψ ∈ Υ₀ s.t. τ ∉ Acceptable(Ψ), ∃h s.t. 1 ≤ h < i and τ ∈ Acceptable((Ψ ∪ {α₁, ..., αᵢ}), and ∃Φ ⊆ P₀(agP) s.t. {α₁, ..., αᵢ} ⊂ Φ and τ ∈ Acceptable((Ψ ∪ Φ)).

Proof. Follows from the definitions of successful dialogues, a basic persuader, a smart persuader, an economical persuader and a regular dialogue (Defs. 3, 4, 5 and 6) and Prop. 1.

From these propositions and our definitions, we can now determine the necessary and sufficient conditions under which none, some or all of the different persuader types generate successful dialogues when following the same strategy. These results are summarised in Table 1, which considers only accurate dialogue scenarios, and in Table 2, which considers only scenarios that are not accurate.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Necessary and sufficient conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succ.</td>
<td>Un. Un. Succ. Imp. (From Prop. 2 or 3.)</td>
</tr>
<tr>
<td>Un.</td>
<td>Succ. Un. Imp. (From Prop. 2 or 3.)</td>
</tr>
<tr>
<td>Un.</td>
<td>Succ. Succ. Imp. (From Prop. 2 or 3.)</td>
</tr>
<tr>
<td>Succ.</td>
<td>Succ. Succ. Imp. (From Prop. 2 or 3.)</td>
</tr>
<tr>
<td>Succ.</td>
<td>Succ. Un. Imp. (From Prop. 2 or 3.)</td>
</tr>
<tr>
<td>Succ.</td>
<td>Succ. Un. Imp. (From Prop. 2 or 3.)</td>
</tr>
</tbody>
</table>

Table 1. For an accurate dialogue scenario and particular strategy, summarises the necessary and sufficient conditions under which all possible combinations of successful (Succ.) and unsuccessful (Un.) dialogues for each of the different persuader types occur.

6 Discussion

In this paper we have formally investigated the use of two approaches (basic and smart) for updating an uncertain opponent model in simple persuasion dialogues, where the persuader uses such a model to determine whether there is any chance of the dialogue leading to success, giving up and unsuccessfully terminating the dialogue as soon as it believes this not to be the case. We have shown that, if the persuader’s initial model of the responder is accurate (i.e., represents the responder’s actual position as being possible) there is no difference in the outcomes produced by the different persuader types with a particular strategy, but a smart persuader may produce a shorter dialogue than a basic persuader, and
There is some prefix (possibly empty) of the strategy that when combined with the responder's initial position determines the topic to be acceptable (from Defs. 4 and 6, since the exhaustive persuader is successful) and (from Prop. 4) the conditions for a successful exhaustive persuader, unsuccessful basic persuader and unsuccessful smart persuader does not hold (see Prop. 5 for details of conditions).

There is no prefix (including the empty prefix) of the strategy that when combined with the responder's initial position determines the topic to be acceptable. (From Def. 4, Def. 6 and Prop. 4.)

Possible, see Prop. 5 for details of conditions.

Impossible. (From Prop. 4.)

Impossible. (From Prop. 4.)

Impossible. (From Prop. 4.)

Possible, see Prop. 6 for details of conditions.

Table 2. For a non-accurate dialogue scenario and particular strategy, summarises the necessary and sufficient conditions under which all possible combinations of successful (Succ.) and unsuccessful (Un.) dialogues for each of the different persuader types occur.

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Necessary and sufficient conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Succ.</td>
<td>Succ. Succ.</td>
</tr>
<tr>
<td>Un.</td>
<td>Un. Un.</td>
</tr>
<tr>
<td>Succ.</td>
<td>Un. Succ.</td>
</tr>
<tr>
<td>Un.</td>
<td>Succ. Un.</td>
</tr>
<tr>
<td>Un.</td>
<td>Un. Succ.</td>
</tr>
<tr>
<td>Succ.</td>
<td>Un. Succ.</td>
</tr>
<tr>
<td>Succ.</td>
<td>Succ. Un.</td>
</tr>
</tbody>
</table>

These results help us to understand the situations under which it can be useful to apply the basic or the smart model update mechanism. If shorter dialogues are desirable and it is certain that the responder's actual initial position is captured as a possibility in the persuader's model, then a smart persuader will produce the best outcome, only producing an unsuccessful dialogue if neither a basic nor exhaustive persuader would succeed with the same strategy, but potentially terminating the dialogue at an earlier stage than the other types of persuader. If the persuader's model might not contain the responder's actual initial position as a possibility, then both a smart and a basic persuader risks incorrectly perceiving its position to be hopeless and unsuccessfully terminating the dialogue when in fact continuing with its strategy would lead to success.

Other works have investigated the use of an opponent model to generate a proponent's dialogue strategy. Rienstra et al. [6] apply a variation of the maxmin algorithm to an uncertain opponent model in order to determine the moves that produce the best expected outcome, while Black et al. [5] use automated planning techniques to generate a strategy with the highest chance of success given an uncertain opponent model. In contrast, here we do not consider here the generation of a dialogue strategy; however, our results can be beneficial in such
settings, particularly in understanding the situations in which a possible strategy might be incorrectly classified as hopeless (using the results from Props. 5 and 6). In their work, Rienstra et al. [6] apply the basic model update mechanism and Black et al. [5] use the smart approach, however neither explicitly considers the effect the update mechanism has on the outcome of the dialogue. Hadjinikolis et al. [7] propose a method an agent can use to augment an opponent model with information it believes is likely to be dialectically related, based on its previous dialogue experience, however they do not consider how this relates to dialogue outcome.

We plan in future work to allow the assignment of probabilities to our uncertain opponent model and adapt our model update mechanisms to manage these, as is considered by Rienstra et al. [6]. The combination of probability with argumentation is a growing area of interest; e.g., recent work has proposed a framework for analysing the expected utility of probabilistic strategies for argument dialogues [10], while Oren et al. consider the use of a probabilistic audience model to determine convincing arguments to move in a monologue [11]. It will be interesting to investigate how the choice of update mechanism for a probabilistic opponent model impacts on dialogue outcome.

References